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INTRODUCTION

The risks of many complex diseases are deter-
mined by a combination of the effects of genetic
susceptibilities and environmental exposures. Ad-
vances in human genome research have thus led
to epidemiologic investigations not only of the
effects of genes alone, but also of their effects in
combination with environmental exposures. The
risk of a disease in relation to two exposures can
be studied at various scales including statistical
interaction (multiplicative or additive), joint ef-
fects, and the subgroup effect of one exposure
within strata defined by the other exposures.

Although the utility of a specific risk parameter
depends on the scientific context and is sometimes
a matter of debate, collectively various risk
parameters of interest involving genetic and
environmental exposures can be important for
understanding biological and public health effects
of the exposures, for targeting high-risk subjects
for intervention, for individual risk prediction,
and for enhancing the power to detect the
association of the disease with one exposure
(e.g., a gene) by selecting subjects to study based
on the other exposure (e.g., the environment).
Studies of genetic and environmental exposures
together, whether designed to evaluate statistical
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interactions or other parameters of scientific
interest, can be cost-prohibitive due to the typical
requirement of large sample sizes to achieve
reasonable statistical power. Thus, efficient de-
signs as well as efficient analytic methods that can
reduce required sample size have become an
important area of genetic-epidemiologic research.
Case-control study designs, in which diseased

(cases) and non-diseased subjects (controls) are
compared with respect to their exposure history,
are now increasingly being used to study the role
of genes and gene-environment interactions in the
etiology of rare diseases. In population-based
case-control designs, cases and controls are
randomly selected from the diseased and non-
diseased subjects that arise in an underlying
population. Typically, the cases and controls in
such designs are unrelated. In contrast, in family-
based case-control designs, controls are selected
from families of the cases. Both population- and
family-based designs have advantages and dis-
advantages [Witte et al., 1999; Gauderman et al.,
1999; Weinberg and Umbach, 2000]. While selec-
tion of population-based controls may be logisti-
cally more convenient, family-based designs can
offer protection against spurious association in-
duced by population stratification or admixture.
Even when bias due to population stratification or
admixture is not a concern, for efficiency reasons
family-based designs may be preferred in studies
of gene-environment interaction involving rare
genetic variants [Witte et al., 1999; Gauderman,
2002].
The focus of this report is family-based designs

where data on both genotype and environmental
exposures are available on cases and related
matching controls within families. Such designs
may include, for example, designs where healthy
siblings [Curtis, 1997; Spielman and Ewens, 1998]
or cousins [Witte et al., 1999] of diseased subjects
are selected as controls. Traditional analysis of
such family-based studies involves conditional-
logistic regression that restricts comparison of
cases and controls to be within the family. The
underlying theory of this approach relies on the
conditional likelihood of the observed disease
configuration data within matched-sets (family)
given the risk factor information of the individual
subjects. This method does not require any
assumptions on the distribution of the risk factors
in the underlying population.
In this article, we develop a new paradigm of

conditional likelihoods for efficient analysis of
family-based case-control studies when genetic

susceptibility and environmental exposures can be
assumed to be independently distributed of each
other within families in the source population.
The efficiency advantage of methods that can

exploit the gene-environment independence as-
sumption was first observed in the context of
population-based case-control studies. If genetic
(G) and environmental (E) risk-factors can be
assumed to be independently distributed in the
underlying population, then the multiplicative
interaction (also known as statistical interaction)
between G and E for a rare disease can be
estimated as the odds ratio between G and E
among cases alone: the corresponding case-only
estimate of interaction can be much more precise
than the corresponding estimate of the interaction
parameter from standard logistic regression ana-
lysis that involves both cases and controls but
does not exploit the independence assumption
[Piegorsch et al., 1994]. For discrete covariates,
Umbach and Weinberg [1997] and then more
generally Chatterjee and Carroll [2005] have
developed efficient methods for estimating all of
the parameters in a logistic regression model
using data from both cases and controls and
utilizing the G-E independence assumption.
The G-E independence assumption has been

exploited also for the case-parent-trio design, an
alternative family-based design that is known to
be powerful for studying the effects of genes
alone. The assumption was first used implicitly to
show that the multiplicative interaction between G
and E can be estimated from a case-parent-trio
design that genotypes cases and their parents and
determines environmental exposures of the cases
[Schaid, 1999]. In particular, the likelihood based
methods for analysis of such data rely on the
assumption that conditional on parental geno-
types, an individual’s exposure status is indepen-
dent of his/her genotype, a relatively weak
independence assumption that is not affected by
spurious association between genotype and ex-
posure status in the general population that may
be created due to hidden substructure [Umbach
and Weinberg, 2000; Thomas, 2000].
Within the context of family-based studies, the

choice of the case-control or the case-parents
design for studies of gene-environment interac-
tion depends on a number of different considera-
tions [Weinberg and Umbach, 2000]. Besides
various practical issues such as the availability
of parents in the case-parent-trio design and
availability of sibling/cousin for case-control de-
signs, an important consideration is the relative
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efficiency of these designs for estimation of
various parameters of interest. Efficiency compar-
isons for estimation of the multiplicative inter-
action parameter have revealed that either the
case-control design or the case-parent design can
be superior depending on whether the effect of
the gene under study is dominant or recessive,
respectively [Witte et al. 1999; Gauderman, 2002].
It is worth noting that in all of these previous
efficiency comparisons, the conditional likeli-
hood method that is used for analysis of case-
parent designs relies on the G-E independence
assumption, while the traditional conditional
logistic regression method used for analysis of
case-control design does not exploit any such
assumption.
In this article, we develop an alternative condi-

tional likelihood framework for analyzing family-
based case-control studies. Our approach relies on
the assumption that genetic and environmental
exposures are independently distributed within
families. This family-level independence assump-
tion, similar to the G-E independence assumption
required for the case-parent design, is relatively
weak in the sense that it is less likely to be affected
by spurious association between G and E in the
population. We show that when the underlying
independence assumption is valid, the method
can lead to major efficiency gains over traditional
conditional logistic regression analysis of family-
based case-control studies.
We also show that our conditional likelihood

framework can be used to analyze data from a
novel hybrid design that obtains genotype data of
parents in addition to collecting genotype and
environmental exposure data on cases and family-
based controls. In particular, we show that a
sibling-case-control design with parental geno-
type information, when analyzed using our new
conditional likelihood approach, can be far super-
ior to the sibling-case-control, case-parent, or
population-based case-control design for estima-
tion of different parameters of interest, and in a
wide variety of situations. Various extensions of
the methods for general family-based studies are
also described.

BACKGROUND OF CONDITIONAL
LOGISTIC REGRESSION (CLR)

MODEL AND NOTATION

For a major part of this article, we consider
designs with 1:1 case-control matching. Later, we

discuss how the methodology can be extended to
more general types of family studies that may
involve more than one case and/or control per
family. We first describe a set of model assump-
tions that are required for traditional CLR
analysis. Let ðD1;D2Þ, ðG1;G2Þ, and ðE1;E2Þ denote
the 0-1 disease indicators, genotypes, and envir-
onmental exposures for a pair of relatives. We
assume that within a given family F, the risk of
disease for two relatives is conditionally indepen-
dent given their covariate information, and that
the prospective risk model for the disease for the
jth (j ¼ 1 or 2) relative is given by the logistic
regression model

prðDj ¼ 1jGj;Ej;FÞ ¼ H aF þmðGj;Ej; bÞ
� �

; ð1Þ

where HðxÞ ¼ f1þ expð�xÞg�1 is the logistic dis-
tribution function and mð�Þ is a known but
arbitrary function. Let RFðG1;G2;E1;E2Þ denote
the joint distribution of ðG1;G2Þ and ðE1;E2Þ
within family F. Standard CLR analysis allows
RFðG1;G2;E1;E2Þ to be completely arbitrary.
There are two important features of the above

model that need special attention. First, model (1)
allows the family-specific intercept parameter aF
to account for potential heterogeneity in disease
risk between different families. Such heterogene-
ity may arise, for example, if there are other
sources of familial aggregation that cannot be
explained by the genetic and environmental
exposures under study.
Second, the model (1) allows the joint log-odds-

ratio (log-relative-risk assuming rare disease)
function mðG;E; bÞ to be of very general form, so
that it can include many different kinds of
interaction models. The standard logistic model
corresponds tomðG;E; bÞ ¼ bGGþ bEEþ bGEG � E,
where expðbGÞ is the relative-risk (assuming rare
disease) associated with the gene variant in the
absence of the environmental exposure (the main
effect of G), expðbEÞ is the relative-risk associated
with the exposure in the absence of the gene-
variant (the main effect of E), and expðbGEÞ is the
multiplicative interaction between G and E, which
measures how the relative-risk associated with
exposure changes with genotypes, or, equiva-
lently, how the relative-risk associated with the
gene variant changes with the exposure, with the
changes being measured in the ratio scale. Many
studies of gene and environment focus on estima-
tion of the multiplicative interaction parameter
bGE, but estimation only of such statistical inter-
action may not necessarily contribute to an
understanding of the biological or public health
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effects of the two exposures [Thompson, 1991;
Clayton and McKeigue, 2001]. Thus, when genetic
and environmental factors are being studied
together, it is important to consider modelling
and estimation approaches that allow flexibility
of estimation of various different parameters
of interest. Examples of such parameters include
the joint effect of the exposures G and E, the
effect of E in sub-groups of subjects with diffe-
rent genetic exposures, the effect of G in sub-
groups of subjects with different environmental
exposures, and interaction between G and E
at various different scales [Khoury, et al., 1993].
We will describe all of our methodologies in
the general setting of model (1), which allows
testing and estimation of all the risk-parameters
of interest.
We assume M relative pairs are sampled

into the study so that each pair has one diseased
(case) and one non-diseased (control) subject.
For the ith such matched set, let Di0, Gi0, and Ei0

denote the disease status, genotype, and envi-
ronmental exposure for the control and Di1, Gi1

and Ei1 denote the corresponding values for
the cases.

TRADITIONAL CONDITIONAL LIKELIHOOD

We now describe the conditional likelihood
that forms the basis for traditional CLR analysis
of family-based or other types of individually
matched case-control studies. In the context of our
model and notation, this conditional likelihood for
the ith matched set is given by

Li;CLR ¼PrðDi1 ¼ 1; Di0 ¼ 0jDi1 þDi0 ¼ 1;

Gi1;Gi0;Ei1;Ei0Þ

¼ exp mðGi1;Ei1;bÞf g
exp mðGi1;Ei1;bÞf g þ exp mðGi0;Ei0;bÞf g :

ð2Þ

In (2), conditioning on the set event Di1 þDi0 ¼ 1
reflects the constraint that by design the total
number of cases in each matched set is exactly
equal to one. For each matched set i, the
conditional likelihood is formed based on the
probability of the observed disease configuration
for the members of the matched set, conditional
on their risk factor information G and E and the
ascertainment event Di1 þDi0 ¼ 1. We observe
that for studying the effect of genes alone using
the sibling-case-control design, Spielman and
Ewens [1998] previously proposed a Monte Carlo
test-procedure, known as Sib-TDT (SDT), based

on within-family permutation of genotypes. The
CLR method can be viewed as an alternative
likelihood-based analysis approach that is effi-
cient as well as flexible in the sense that it allows
both testing and estimation of risk parameters, can
adjust for co-factors, and can be used to study
gene-environment interaction.
There are several features of the above condi-

tional likelihood that make the CLR analysis very
flexible. First, computation of the CLR likelihood,
as shown in the second line of formula (2), is free
of the family-specific intercept parameters aFi and
hence does not require any modelling assump-
tions about possible mechanisms of heterogeneity
in disease risk between different families that
cannot be explained by the genetic and environ-
mental risk factors under study. Moreover, the
likelihood in formula (2) is constructed based on
probabilities that condition on all the risk factor
information in a matched set and, hence, is free of
any assumption about RFðG1;G2;E1;E2Þ, the joint
distribution of the risk factors in pairs of relatives.
At the same time, however, the method, being
distribution free, cannot exploit the gene-environ-
ment independence assumption when it is reason-
able to do so.

PROPOSED METHODOLOGY

A NOVEL CONDITIONING PRINCIPLE

We propose to exploit an appropriate G-E
independence assumption based on a conditional
likelihood that does not condition on all of the
genotype information of the individual subjects in
a matched set. The straightforward choice for such
a conditional likelihood is PrðDi1 ¼ 1;Di0 ¼ 0;
Gi1;Gi0jDi1 þDi0 ¼ 1;Ei1;Ei0Þ. However, a compli-
cation with such a conditional likelihood is that its
computation depends on the joint genotype
frequencies for pairs of relatives. In the presence
of population substructure, genotype frequencies
may vary across families and estimation of the
regression parameters in the presence of family-
specific genotype/allele frequency parameters is
not possible without a strong modelling assump-
tion about the distribution of the gene in different
families. Since a major motivation of family-based
designs is to avoid making this kind of assump-
tion, we propose an alternative conditional like-
lihood that does not involve the genotype-
frequency parameters and yet can exploit the
G-E independence assumption. The most general

Gene-Environment Independence 141



form of such a conditional likelihood is given by

Li;general ¼ PrðDi1 ¼ 1;Di0

¼ 0;Gi1;Gi0jDi1 þDi0 ¼ 1;Gi;Ei1;Ei0Þ; ð3Þ
where the conditioning event Gi denotes a variable
that contains partial, but not all, information about
the genotypes of the subjects in the matched set i,
chosen in such a way that Li;general remains free of
genotype-frequency parameters. Similar ideas for
conditioning on partial genotype information to
remove distributional assumption on genotypes
have been previously used in the context of case-
parent-trio studies of genetic association [Clayton,
1999; Cordell and Clayton, 2002; Rabinowitz and
Laird, 2000]. In what follows, we will show how
such an idea can be utilized for efficient analysis
of gene-environment interaction in the context of
case-control studies.

THE NEW CONDITIONING
PARADIGM IN THE STANDARD

CASE-CONTROL DESIGN

We now describe how the conditioning princi-
ple outlined above can be applied to analyze data
from standard family-based case-control designs
where genotype and exposure data are available
only for selected cases and related matching
controls. The required G-E independence as-
sumption for this design is that the joint genotype
and exposure status are independent for pairs of
relatives within each family in the source popula-
tion. Formally speaking, this assumption for a
given family F implies that the joint genotype and
exposure distribution RFðG1;G2;E1;E2Þ can be
expressed as

RFðG1;G2;E1;E2Þ ¼ QFðG1;G2Þ�VFðE1;E2Þ; ð4Þ
where QF and VF are the family specific distribu-
tions of ðG1;G2Þ and ðE1;E2Þ, respectively. We also
assume that the joint genotype distribution for
any pair of relatives is symmetric, that is
QFðg1; g2Þ ¼ QFðg2; g1Þ, an assumption that auto-
matically holds under the Mendelian law of
inheritance within families. Hereafter, we will
describe the assumption stated in (4) as ‘‘Type-I
Independence’’ to distinguish it from an alter-
native independence assumption that we will use
later for case-control designs with parental geno-
type information.
Observe that independence assumption (4) is

much weaker than the population-based G-E
independence assumption that is required for

the case-only design. The population-based in-
dependence assumption, for example, may be
violated due to the effects of a hidden population
substructure [Umbach and Weinberg, 2000] or the
influence of family history, a factor that is clearly
related to susceptibility genes, on lifestyle factors
such as smoking [Thomas, 2000]. Since related
subjects share both ethnic and family history
background, the within-family independence as-
sumption (4) is much less likely to be affected by
spurious association due to these factors. In
particular, the assumption is the weakest for the
sibling-case-control design, because siblings share
ethnic and family history background. Cousins,
on the other hand, only partially share these
factors and thus the required assumption for the
cousin case-control design is stronger. Possible
ways for further relaxing this assumption based
on a conditional independence model will be
discussed later.
In the setting of the standard case-control

design, we propose the conditioning event Gi in
the likelihood (3) to be GS

i , the set of genotypes that
is observed in the ith matched pair. For matched
pairs where observed genotypes are discordant, Gi

contains the information on the two different
types of genotypes that are observed for that pair,
but does not specify the individual genotype of
the case (Gi1) and the control (Gi0). In the
Appendix, we show that under a rare disease
assumption, with this definition of Gi the pro-
posed conditional likelihood (3) can be computed
as

Li;CC ¼
exp mðGi1;Ei1;bÞf gP1

j¼0 exp mðGij;Ei1; bÞ
� �

þ exp mðGij;Ei0;bÞ
� �� � :

ð5Þ
The sum in the denominator of Li;CC essentially
constitutes four subjects corresponding to the
four genotype-exposure configurations: ðGi0;Ei0Þ;
ðGi1;Ei1Þ; ðGi0;Ei1Þ; and ðGi1;Ei0Þ. Thus, Li;CC is the
same as the standard conditional likelihood for
a 1:3-matched design, where the two additional
subjects with genotype-exposure configuration
ðGi0;Ei1Þ and ðGi1;Ei0Þ can be viewed as "pseudo"
family members obtained by exchanging the
genotypes of the observed family members: under
the G-E independence assumption, such "pseudo"
subjects are as equally likely to appear in a family
as the observed subjects in that family. In this
spirit, the proposed methodology has an intri-
guing similarity with the conditional logistic
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regression analysis of case-parent trio designs
[Self et al., 1991], which is also based on pseudo-
sibs for the observed case that could have been
observed given the genotype of the parents.
Several other observations can be made from

the final form of the conditional likelihood (5).
First, similar to the standard conditional like-
lihood, Li;CLR in (2), Li;CC is free of the family-
specific intercept parameters aFi . Second, although
Li;CC relies on the assumption of independence
between G and E within each family, it is
otherwise quite flexible in the sense that it does
not depend on any assumption about VFðE1;E2Þ,
the family-specific distributions of joint exposure
status for two relatives. Finally, because of the
standard CLR form, estimates of the regression
parameters b that maximize Li;CC, as well as
corresponding asymptotic variance estimates,
can be obtained by using standard and widely
available CLR software.
In the Appendix, we derive standard errors for

the estimates of b for a general class of designs
that include all the designs described in this
report. The relevant formula is (A.5). Also, in the
Appendix we show that the proposed method is
asymptotically at least as efficient as standard
CLR. Indeed, what we show is that the asymptotic
covariance matrix of estimates of b that maximize
Li;CC can be written as

V ¼ I�1ðbÞ ¼ fI1ðbÞ þ I2ðbÞg�1;

where I1ðbÞ is the information matrix correspond-
ing to the standard conditional likelihood (2)
and I2ðbÞ is a non-negative definite matrix.
This automatically proves that fI1ðbÞ þ I2ðbÞg�1 �
fI1ðbÞg�1 in the sense fI1ðbÞ þ I2ðbÞg�1 � fI1ðbÞg�1

is always a non-positive-definite matrix, thus
implying that the proposed method is asymptoti-
cally at least as efficient as standard CLR.
Finally, we observe that the within family G-E

independence assumption can be also exploited
to construct powerful permutation-based methods
for testing a global null hypothesis of no associa-
tion. The pivot statistics could be given by any
measure of distance, such as the sum of square
differences, between the joint genotype and
exposure frequencies of the cases and those of
the controls. The permutation distribution of the
statistics can be then generated by randomly
switching G and E status within matched pairs
of cases and controls. Unlike standard permuta-
tion tests, where covariates are permuted together,
under the G-E independence assumption the two

type of exposures should be permuted indepen-
dently of one another.

THE NEW CONDITIONING
PARADIGM IN CASE-CONTROL

DESIGN WITH PARENTAL
GENOTYPE DATA

For simplicity of notation, we will describe the
proposed method in the context of a case-sibling-
control design with parental genotype informa-
tion. The method easily extends to alternative
types of matched case-control designs as long as
genotype data are available for parents of both
cases and controls.
We assume M matched case-control sibling-

pairs are sampled into a study. We use the same
data structure and notation that we have intro-
duced earlier for the standard family-based case-
control designs. In addition, we define GP

i ¼
ðGiM; GiFÞ to be the parental (mother and father)
genotype data for the ith matched pair. The key
assumption we exploit in this design setting is that
genotype and exposure status for pairs of relatives
in the source population are independently dis-
tributed conditional on their parental genotype
information. Thus, if ðG1;G2Þ and ðE1;E2Þ denote
the joint genotype and exposure status for a pair
of siblings and GP denotes their parental genotype
information, the required independence assump-
tion can be stated formally as

prðG1;G2;E1;E2jGPÞ ¼ prðG1;G2jGPÞ�prðE1;E2jGPÞ:
ð6Þ

Moreover, assuming a Mendelian mode of
inheritance given parental genotypes, we can
write prðG1;G2jGPÞ ¼ prðG1jGPÞ�prðG2jGPÞ. The
family-based independence assumption stated in
formula (6) is very weak in the sense that it is
robust to the effects of various factors such as the
presence of hidden population sub-structure or
the influence of family history on lifestyle-related
exposures. We will describe the assumption stated
in (6) as ‘‘Type-II Independence’’.
In the setting described above, we propose to

use the conditioning event (Gi) in the general
conditional likelihood (3) to be the parental
genotype information (GP

i ). We observe that GP
i is

a larger event than GS
i , the set genotype informa-

tion in a case-control pair, in the sense that GP
i

contain the information of all possible values for
GS
i . Thus, it is expected that when parental
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genotype data are available, conditioning on GP
i

will be more efficient than the conditioning on GS
i .

The general conditional likelihood (3) with Gi ¼ GP
i

can be computed as

where HGP
i
denotes all possible offspring geno-

types associated with the parental genotypes GP
i .

The quantities pr GijjGP
i

� �
, the genotype probability

of an offspring given the genotype of the parents,
can be computed as fixed constants assuming a
standard Mendelian mode of inheritance within
family. Derivation of formula (7) follows assum-
ing rare disease and calculations similar to those
for the derivation of formula (5), and is given in
the Appendix. In terms of computation, estimates
of b maximizing Li;CCGP and associated standard
errors can be obtained using standard CLR soft-
ware that allows incorporation of offset terms.
The general form of the covariance matrix of the
parameter estimates is given in equation (A.5) in
the Appendix.
There are connections between LCCGP and the

traditional conditional-likelihood for case-parents-
trio (CPT) data [Self et al., 1991; Schaid, 1999],
which is given by

Li;CPT ¼
expfmðGi1;Ei1; bÞgpr Gi1jGP

i

� �P
G0
i1
2HGP

i

expfmðG0
i1;Ei1; bÞgpr G0

i1jG
P
i

� � :
ð8Þ

The numerators of both Li;CCGP and Li;CPT
correspond to the ith case, with the expressions
being the same up to a constant term. However,
there are differences in the denominator. While
the denominator of Li;CPT consists of all possible
offspring the ith pair of parents could have had
with the offsprings’ environmental exposure the
same as that of the observed case (Ei1), the
denominator of Li;CCGP consists of those of Li;CPT
plus all possible offspring the ith pair of parents
could have had with the offsprings’ environmen-
tal exposure the same as that of the observed
control (Ei0).
In recent years, various extensions of Li;CPT

have been developed for utilizing data on multi-
ple offspring in nuclear families [Clayton, 1999;
Cordell and Clayton, 2002; Cordell et al., 2004;
Kraft et al., 2004]. All of these methods, how-
ever, condition on the exact phenotype (disease

status) of the individual offsprings. As a result,
in these methods, unaffected subjects (controls)
are only indirectly informative, in the sense that
they can be utilized to infer missing parental

genotype data, but once the parental geno-
type information is available/inferred, the un-
affected subjects are ignored in the respective
conditional likelihoods. In contrast, Li;CCGP condi-
tions only on the set of phenotypes defined by
the event D1 þD0 ¼ 1, instead of the individual
phenotypes D1 and D0 themselves. In this
approach, the unaffected offspring remain infor-
mative even when complete parental genotype
information is available. The environmental ex-
posure status (E0) of the unaffected subject allows
estimation of bE, the main effect parameter
associated with E, which cannot be estimated
from Li;CPT. Moreover, incorporation of the un-
affected subjects leads to major increase in
efficiency for estimation of the multiplicative
interaction parameter (bGE) and other related
quantities (see Tables I and II). It is, however,
important to note that Li;CCGP, similar to Li;CC,
requires the assumption that the selection of a
case-control pair of relatives does not depend on
the individual G and E status of the relatives [Hsu
et al., 2000].

SIMULATION STUDIES INVOLVING
DIFFERENT DESIGNS AND

ANALYTIC METHODS FOR FAMILY-
BASED CASE-CONTROL STUDIES

In this section, we report simulation studies of
the relative efficiency of different study designs
and analytic methods for estimation of various
risk-parameters of interest using data from nucle-
ar families. In particular, we considered three
designs: (A) the Sibling-Case-Control (SCC) de-
sign with G and E available on the matched cases
and controls; (B) the Case-parent-trio (CPT) design
with G available on cases and their parents and E
available on the cases; and (C) the Sibling-Case-
Control design with genotyped parents (SCCGP).
The analytic methods we compared are: (1)
Traditional conditional likelihood (Li;CLR) for de-
sign (A); (2) the proposed conditional likelihood

Li;CCGP ¼
exp mðGi1;Ei1;bÞf gpr Gi1jGP
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(Li;CC) for design (A); (3) the efficient conditional
likelihood (Li;CPT) method for analysis of designs
(B) [Self et al., 1991; Schaid, 1999]; and (4)
the proposed conditional likelihood (Li;CCGP) for
design (C).

THE SIMULATION DESIGN

We assumed that the gene variant of interest is a
bi-allelic locus with the wild and variant-type
alleles being denoted by A and a, respectively. We
considered two distinct settings of interest, one for
rare variants and the other for common variants.
Within each setting, we considered dominant and
recessive models for the effect of the gene-variant.
We also assumed a binary environmental expo-
sure and considered two scenarios, one involving
a common exposure and the other involving a rare
exposure.
We simulated data for nuclear families consist-

ing of two siblings and their parents using the

following setup. We simulated a family-specific
allele frequency parameter to allow for popula-
tion-substructure. For each family (F), we simu-
lated an allele frequency parameter (yF) by first
generating a random variable uF from the normal
distribution with mean parameter m and variance
s2 and then transforming uF to the 0-1 scale as
yF ¼ expðuFÞ= 1þ expðuFÞ

� �
. We chose the var-

iance parameter s2 to be 0.5 so that the �2s limit
of this distribution corresponds to approximately
15-fold variation in allele frequency across differ-
ent families. We chose the mean parameter m in
such a way that the marginal probability of the
genotype variant of interest (Aa or aa for the
dominant model and aa for the recessive model) in
the underlying population is fixed at 0.01 for the
setting of a rare variant and 0.2 for the setting of a
common variant. Given the allele frequency
parameter yF for a family, we generated the
genotype data for the parents assuming Hardy-
Weinberg-Equilibrium and that the parents are

TABLE I. Dominant Gene: Bias and efficiencies of alternative family-based designsa and analytic methodsm for
evaluation of different risk parameters

SCCd2

CPTd1: Lm1
CPT Lm2

CLR Lm3
CC SCCGPd3: Lm4

CCGP

{pG, pE}
b

{bG, bE}
c Risk-parametersd Biase REf Biase REf Biase REf Biase REf

0.01, 0.2 OR(G|E¼1) 0.09 1.13 �0.01 1.62 0.03 2.30 0.08 3.49
log(7), log(1.3) OR(E|G¼1) NA NA �0.02 2.89 0.09 5.52 0.10 5.67

MIGE 0.18 0.81 �0.02 2.90 0.11 5.52 0.13 5.67
AIGE NA NA �0.02 2.90 0.09 5.56 0.11 5.64

0.2, 0.2 OR(G|E¼1) 0.05 1.04 0.00 0.82 0.02 1.04 0.04 1.52
log(1.3), log(1.3) OR(E|G¼1) NA NA 0.00 0.93 0.02 1.19 0.03 1.40

MIGE 0.06 0.94 �0.00 1.05 0.02 1.34 0.04 1.64
AIGE NA NA 0.00 1.05 0.02 1.40 0.04 1.72

0.01, 0.5 OR(G|E¼1) 0.09 0.82 �0.01 0.66 0.02 0.78 0.08 1.38
log(7), log(1.12) OR(E|G¼1) NA NA �0.01 2.49 0.09 3.89 0.10 4.18

MIGE 0.19 0.70 �0.01 2.39 0.10 3.58 0.12 3.83
AIGE NA NA �0.01 2.48 0.09 3.91 0.11 4.18

0.2, 0.5 OR(G|E¼1) 0.04 0.79 �0.00 0.56 0.01 0.63 0.03 1.05
log(1.3), log(1.12) OR(E|G¼1) NA NA 0.00 0.94 0.02 1.14 0.02 1.34

MIGE 0.05 0.79 0.00 0.96 0.02 1.16 0.03 1.37
AIGE NA NA 0.00 0.94 0.02 1.17 0.03 1.38

aDesigns: d1Case-parents trio, d2Sibling case-control, and d3Sibling case-control w. genotyped parents. Methodsm: Conditional-likelihoods
described in formulae m1(8), m2(2), m3(5), and m4(7).
bGenotype (G¼Aa/aa) and exposure (E¼1) frequencies.
cTrue values for main effects of G and E.
dOR(G|E¼1): OR for G among subjects with E¼1; OR(E|G¼1): OR for E among subjects with G¼1; MIGE; multiplicative-interaction; AIGE:
additive interaction.
eRelative bias evaluated as (true value – mean estimated value)/true value.
fRelative efficiencies compared to a population-based case-control design with the same number of cases and 1:1 case-control ratio.
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independent. Given the genotype of the parents,
we generated the genotypes for a pair of siblings
based on a standard Mendelian mode of inheri-
tance. We generated the environmental exposures
for a pair of siblings by first generating a pair
of correlated random variables ðE�

1;E
�
2Þ from a

bivariate normal distribution with marginal
means zero, marginal variances one and a
correlation parameter r. We then dichotomized
E�
1 and E�

2 into two binary 0-1 exposure variables
E1 and E2 so that the marginal probability of
exposure (E ¼ 1) for the underlying population is
0.2 for the setting of a rare exposure and 0.5 for the
setting of a common exposure. In our basic
simulation setting (Tables I and II), we fixed the
correlation parameter r ¼ 0:3 so that it represents
only a modest correlation between the environ-
mental exposures for a pair of siblings. Later (Figs.
1 and 2), we explore the effect of varying r on the
efficiencies of different designs and analytic
methods.

We simulated the family-specific intercept term
(aF) to allow for heterogeneity in disease-risk
between families that cannot be accounted for by
G and E. For a given family F, we generated aF
from the normal distribution with mean a and
variance t2. We chose t2 ¼ 1 so that the �2s limit
of this distribution corresponds to an approxi-
mately 50-fold variation in disease risk between
families due to unknown factors. We fixed the
mean parameter a at different values for different
settings so that the marginal probability of the
disease in the population, prðD ¼ 1Þ, is always
fixed at 0.01. Given aF, we generated the disease
outcome for each sibling, independent of the
other, using the logistic regression model

prðDj ¼ 1jGj;Ej; aFÞ

¼ exp aF þ bGfðGÞ þ bEEþ bGEfðGÞ � Ef g
1þ exp aF þ bGfðGÞ þ bEEþ bGEfðGÞ � Ef g ;

ð9Þ

TABLE II. Recessive gene: bias and efficiencies of alternative family-based designsa and analytic methodsm for
evaluation of different risk parameters

SCCd2

CPTd1: Lm1
CPT Lm2

CLR Lm3
CC SCCGPd3: Lm4

CCGP

{pG, pE}
b

{bG, bE}
c Risk-parametersd Biase REf Biase REf Biase REf Biase REf

0.01, 0.2 OR(G|E¼1) 0.11 2.81 �0.02 1.69 0.04 2.74 0.10 5.43
log(7), log(1.3) OR(E|G¼1) NA NA �0.03 2.49 0.12 4.62 0.14 5.74

MIGE 0.21 2.04 �0.04 2.49 0.14 4.09 0.18 5.12
AIGE NA NA �0.03 2.51 0.12 4.67 0.15 5.78

0.2, 0.2 OR(G|E¼1) 0.05 1.28 0.00 0.69 0.02 0.95 0.04 1.73
log(1.3), log(1.3) OR(E|G¼1) NA NA 0.00 0.92 0.02 1.26 0.03 1.45

MIGE 0.06 1.13 �0.00 0.96 0.03 1.40 0.04 1.80
AIGE NA NA 0.00 0.93 0.02 1.39 0.04 1.86

0.01, 0.5 OR(G|E¼1) 0.10 2.06 �0.01 0.90 0.02 1.14 0.09 2.99
log(7), log(1.12) OR(E|G¼1) NA NA �0.01 2.26 0.11 4.33 0.13 5.26

MIGE 0.20 1.77 �0.01 2.26 0.13 3.93 0.15 4.83
AIGE NA NA �0.01 2.26 0.11 4.33 0.14 5.28

0.2, 0.5 OR(G|E¼1) 0.04 1.14 �0.00 0.59 0.01 0.70 0.04 1.29
log(1.3), log(1.12) OR(E|G¼1) NA NA 0.00 0.79 0.02 1.05 0.02 1.13

MIGE 0.05 0.80 0.00 0.73 0.02 0.95 0.04 1.13
AIGE NA NA 0.00 0.72 0.02 0.98 0.03 1.17

aDesigns: d1Case-parents trio, d2Sibling case-control, and d3Sibling case-control w. genotyped parents. Methodsm: Conditional-likelihoods
described in formulae m1(8), m2(2), m3(5), and m4(7).
bGenotype (G¼aa) and exposure (E¼1) frequencies.
cTrue values for main effects of G and E.
dOR(G|E¼1): OR for G among subjects with E¼1; OR(E|G¼1): OR for E among subjects with G¼1; MIGE; multiplicative-interaction; AIGE:
Additive interaction.
eRelative bias evaluated as (true value�mean estimated value)/true value.
fRelative efficiencies compared to a population-based case-control design with the same number of cases and 1:1 case-control ratio.
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where fðGÞ is a binary 0-1 function reflecting
the mode of effect of the gene: fðAa=aaÞ ¼ 1 for
dominant and fðaaÞ ¼ 1 for recessive. In the basic
simulation setting (Tables I and II), we chose
the main effect parameters bG to be logð7Þ
when prffðGÞ ¼ 1g ¼ 0:01 and logð1:3Þ when
prffðGÞ ¼ 1g ¼ 0:2, so that the two settings corre-
sponds to a high-penetrance rare variant and a
low-penetrance common variant, respectively.
Similarly, we chose bE to be logð1:3Þ when prðE ¼
1Þ ¼ 0:2 and logð1:12Þ when prðE ¼ 1Þ ¼ 0:5, so
that the main effect of E is stronger when the
exposure is rare. We fixed bGE to be logð3Þ, which
corresponds to a strong multiplicative interaction
between G and E.
Following this scheme, we first generated data

for a large number of randomly sampled nuclear

families. Treating these randomly selected families
as the underlying population, we then selected
5,000 families with one diseased and one non-
diseased sibling. During analysis of data from
each design, we only retained the appropriate
genotype and environmental exposure informa-
tion for that design and discarded the rest of the
information.
In the above simulation setting, we used two

types of random effects, namely uF and aF, to
generate variations in genotype frequencies and
disease-risk, respectively, across families. We
chose these random effects to be uncorrelated
with each other so that there is no population-
level association between genetic exposure and
disease risk that cannot be explained by the direct
effect of the gene on risk of the disease other than
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Fig. 1. Dominant gene: Relative efficiency (RE) of alternative family-based designs and analytic methods as a function of sibling-

correlation (q) in exposure (E). The top axis shows the correlation in the binary OR scale. The methods compared are LCLR (solid line),

LCC (dashed line), LCPT (dotted line), and LCCGP (dashed/dotted line). MIGE and AIGE indicate multiplicative and additive interaction
parameters, respectively. Values of the relative efficiency are evaluated based on 500 simulations. In each simulation, data for different

designs are generated based on 5,000 cases.
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through the parameters bG and bGE in the risk
model (9). Thus, in this setting, bias due to
population-stratification not being a concern, a
case-control study based on unrelated subjects is
an alternative valid design. We chose the popula-
tion-based case-control design (PCC), analyzed
with standard logistic regression, to be the
common reference point for evaluating the rela-
tive efficiencies of various family-based designs
and analytic methods. To simulate data for this
design, we first generated data for a large number
of randomly sampled nuclear families and then
selected 5,000 cases and 5,000 controls from 10,000
independent families.
For evaluating the efficiencies of different

designs and methods, we considered four dif-
ferent parameters of epidemiologic interest: (1)

ORðGjE ¼ 1Þ ¼ expðbG þ bGEÞ: the odds ratio asso-
ciated with the gene variant among subjects
with environmental exposure (E ¼ 1); (2) ORðEjG
¼ 1Þ ¼ expðbE þ bGEÞ: the odds ratio associated
with the environmental exposure among subjects
with a variant genotype (G ¼ 1); (3) MIGE
¼expðbGEÞ: the multiplicative interaction between
G and E; and (4) AIGE ¼expðbG þ bE þ bGEÞ�
expðbGÞ � expðbEÞ þ 1: the additive interaction
between G and E [Khoury et al., 1993]. All of the
designs except the case-parent-trio design yield an
estimate of all of the four types of association/
interaction parameters; the case-parent trio design
cannot estimate the main effect of E (bE) and
hence also cannot estimate OR(EjG ¼1) and AIGE.
Strictly speaking, estimates for a particular

type of association/interaction parameter from
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Fig. 2. Recessive gene: Relative efficiency (RE) of alternative family-based designs and analytic methods as a function of sibling-

correlation (q) in exposure (E). The top axis shows the correlation in the binary OR scale. The methods compared are LCLR (solid line),
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parameters, respectively. Values of the relative efficiency are evaluated based on 500 simulations. In each simulation, data for different
designs are generated based on 5,000 cases.
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different designs are not directly comparable due
to differences in scale of measurement. That is,
while the model for analyzing the CPT design is
defined in terms of within family relative risk
parameters, those for family-based and popula-
tion-based case-control designs are defined in
terms of within- and between-family odds-ratio
parameters, respectively. In spite of such differ-
ences, one common goal of all of the designs is to
test for hypotheses about different types of
association/interaction parameters. Thus, we
evaluated different designs based on their relative
powers for rejecting the null hypothesis about
different association/interaction parameters in
the respective underlying scales. For each type of
association/interaction parameter of interest (y),
we evaluated the quantity t ¼ logðŷyÞ=sdflogðŷyÞg,
where logðŷyÞ and sdflogðŷyÞg are the empirical
mean and the standard error of the estimate of y
from a given design over different simulated data
sets. The ratio of t2 for two designs estimates the
asymptotic relative efficiency of the two designs,
i.e., the inverse-ratio of the sample sizes required
by the two designs to reject the null hypothesis of
no association/interaction, i.e., logðyÞ ¼ 0. For rare
diseases, such as the one considered in our
simulation setting, the differences between the
mean estimates of parameters logðŷyÞ from differ-
ent designs are small and thus the relative
efficiencies of different designs are mostly deter-
mined by the precision of parameter estimates
1=varflogðŷyÞg.

RESULTS: BIAS AND EFFICIENCY

Table I (dominant gene) and Table II (reces-
sive gene) show the results of simulation experi-
ments with fixed sets of parameter values. We
make several key observations from Tables I and
II, as follows. For the scenario of ‘‘low penetrance
common variant’’ (bG ¼ logð1:3Þ;prffðGÞ ¼ 1g
¼ 0:2), all of the proposed analytic methods had
negligible percentage bias in estimating the ‘‘true’’
parameters of the underlying disease-risk model.
For the scenario of ‘‘high-penetrance rare variant,’’
the novel methods produced noticeable, but
modest (� 15%), bias in parameter estimates.
The bias likely arises due to the rare disease
approximation, because in this setting the risk of
disease for subjects with both the genetic and the
environmental exposure was as high as 30%.
Comparison of the traditional (LCLR) and the
proposed method (LCC) of analyzing the SCC
design shows the major efficiency advantages of

the latter approach for all of the four different
parameters. Comparison of the CPT design and
the SCC design shows that the latter design, when
analyzed using our new method (LCC), was
superior for estimation of the multiplicative
interaction term. For estimation of ORðGjE ¼ 1Þ,
however, the CPT design was generally more
efficient. The SCCGP design, when analyzed
using our approach (LCCGP), had the highest
efficiency among all of the designs for all of the
four different association/interaction parameters.
The efficiencies of all of the family-based designs
relative to the PCC design decreased as either the
genetic or the environmental exposure becomes
more common.
Figures 1 (for dominant gene) and 2 (for

recessive gene) show the effect of varying the
parameter r that determines the correlation
between the exposure variables in a pair of
siblings. For these graphs, we chose other para-
meter values of the simulation in such a way so
that they reflect an intermediate situation between
the ‘‘high-penetrant rare gene’’ and ‘‘the low-
penetrant common gene’’ scenarios we considered
for Table I and Table II. In particular, we fixed
PrðG ¼ 1Þ ¼ 0:1, PrðE ¼ 1Þ ¼ 0:3, bG ¼ logð1:6Þ,
bE ¼ logð1:12Þ, and bGE ¼ logð3Þ.
Overall, for all of the four types of parameters,

the efficiencies of the SCC and SCCGP designs,
relative to the PCC design, decreased as r
increased. The efficiency of the CPT design did
not depend on r as this design does not involve
the sibling controls. Comparison of the traditional
(LCLR) and novel conditional likelihood method
(LCC) for analyzing the SCC design shows that the
efficiency advantage of the latter method re-
mained fairly constant over a wide range of value
of r: only at very high values of r did the
difference between the two method starts dimin-
ishing. When r ¼ 1, which corresponds to two
siblings having identical exposures, the two
methods are identical and hence had the same
efficiency. The efficiency of the SCCGP design
also remained substantially higher than all the
other designs except for extremely high values of
r. At r ¼ 1, the SCCGP and CPT design are
identical. At r ¼ 1, none of the family-based
designs can estimate the association parameter
ORðEjG ¼ 1Þ and the additive interaction para-
meter AIGE.
Inspection of the efficiencies of the family-based

designs relative to the PCC design suggests that in
our simulation setting, where the gene-variant is
moderately common, i.e., PrðG ¼ 1Þ ¼ 0:1, the
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SCC design, when analyzed using the traditional
method (LCLR), had a lower efficiency than the
PCC design for high values of r (r40:5). In
contrast, when analyzed with the novel method
(LCC), the efficiency of the SCC design remained
higher in a wider range of r. The efficiency of the
SCCGP design remained higher than that for the
PCC design for almost all values of r.

RESULTS: TYPE-I ERROR RATE

Under a global null hypothesis of no association
of the disease with either G or E, the conditional
probabilities PrðDi1 ¼ 1;Di0 ¼ 0;Gi1;Gi0jDi1 þ
Di0 ¼ 1;Gi;Ei1;Ei0Þ become free of the intercept
parameters irrespective of whether the disease is
rare or not. Thus, the tests based on our proposed
likelihood will be valid under this global null
hypothesis whether the disease is rare or not. We
evaluated the empirical type-I error rates of the
proposed methods for testing weaker null hy-
potheses that specify only certain parameters of
interest to be null, but leave the other parameters
unspecified.
We consider the simulation setting of a high-

penetrant dominant rare gene, a scenario where
we had observed modest bias in parameter
estimation due to violation of the rare disease
assumption. We simulated data under four types
of null hypotheses corresponding to (1) MIGE ¼ 1,
(2) ORðGjE ¼ 1Þ ¼ 1, (3) ORðEjG ¼ 1Þ, and (4)
AIGE ¼ 0. For generating data under (1), we chose
bG to be logð7Þ and bE to be logð1:3Þ as before, but
set bGE ¼ 0. For generating data under (2), we
chose bGE ¼ �bG ¼ � logð7Þ and bE ¼ logð1:3Þ.
Similarly, for generating data under (3), we chose
bGE ¼ �bE ¼ � logð1:3Þ and bG ¼ logð7Þ. Finally,
for generating data under (4), we chose bG ¼
logð7Þ and bE ¼ logð1:3Þ and then solved for
that value of bGE so that expðbG þ bE þ bGEÞ�
expðbGÞ � expðbEÞ þ 1 ¼ 0. Table III shows the
empirical type-I error rates of the Wald tests (5%
significance level) associated with the likelihoods
LCC and LCCGP. We observe that for each type of
null hypotheses, the test procedures maintained

the nominal a -level very well. We also found
the tests to be unbiased in extensive simulation
studies in the other settings of Tables I and II
(data not shown). These results are also consis-
tent with the fact that in all of the scenarios in
Tables I and II where we had observed modest
bias in parameter estimation, the direction of
bias was always towards the null value of the
parameters.

GENERAL FAMILY DATA WITH r AFFECTED
AND s UNAFFECTED SUBJECTS

In this section, we briefly outline how the
proposed methods for analyzing 1:1 family-
matched case-control studies can be utilized for
more general family studies that collect genotype
and environmental exposure data for more than
one affected and/or unaffected family members.
Suppose there areM families sampled into a study
and each family defines a matched set consisting
of comparable cases and controls in the family, all
of whom have data on both G and E. Suppose the
ith family defines a matched set consisting of ri
cases and si controls with a total of ni ¼ ri þ si
subjects. Let Di0 and Di1 denote the set of controls
and cases, respectively, for the ith family.
Liang [1987] proposed a pairwise pseudo-like-

lihood approach for analysis of matched case-
control studies in which the contribution of a
matched set of ri cases and si controls is given by
the product of the usual conditional likelihoods
(Li;CLR) for 1:1 matched studies for all possible
ri�si case-control pairs within that matched set.
Under the gene-environment independence as-
sumption, we propose to use a similar pseudo-
likelihood approach based on case-control pairs,
except that for each pair we use an appropriate
efficient conditional likelihood instead of the
traditional conditional likelihood. More explicitly,
the pseudo-likelihood for the data can be written
in the general form

L ¼
YM
i¼1

Y
j2Di0

;k2Di1

LðjkÞi;�; ð10Þ

where LðjkÞi;� denotes an appropriate conditional-
or pseudo-conditional likelihood for the ðj; kÞth
case-control pair within the ith matched set: the
likelihood should be chosen efficiently according
to whether and what kind of parental genotype
data are available for that pair. In particular, when
parental genotype data (both parents) are avai-
lable for both subjects in the pair, LðjkÞi;� can be
defined to be the conditional likelihood LðjkÞi;CCGP

TABLE III. High-penetrant rare dominant gene:
empirical type-I error rates of wald-tests with 5%
significance levels

Methods
H0:

MIGE¼1
H0:

OR(G|E¼1)¼1
H0:

OR(E|G¼1)¼1
H0:

AIGE¼0

LCC 0.042 0.048 0.040 0.036
LCCGP 0.040 0.052 0.056 0.030
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(formula 8). When parental genotype data (both
parents) are available only for the case in the pair,
LðjkÞi;� can be defined to be LðjkÞi;CC�CPT ¼ LðjkÞi;CC
�LðjkÞi;CPT, a pseudo-likelihood that efficiently
combines information from case-control and case-
parents-trio data. In all other cases, we propose to
use LðjkÞi;CC (formula 5). Finally, we observe that if
for some families only cases and their parents, but
no matching controls, are available, the contribu-
tion of these families in the above pseudo-like-
lihood can be defined by Li;CPT, the usual
conditional-likelihood for case-parents-trio data.
In the pseudo-likelihood (10), the contribution

of a matched set is obtained by taking the product
of the contributions of all different case-control
pairs within the set pretending that the different
pairs from the same family are independent. From
the theory of estimating-equations [Godambe,
1991], it is well known that such pseudo-like-
lihood methods produce consistent estimates of
regression parameters even if in truth there is
correlation among paired units within the same
family. For variance estimation, however, the
correlation within a family needs to be accounted
for. A sandwich covariance matrix estimator that
can account for such correlation is given in the
Appendix: the formula is (A.9). In addition,
bootstrap sampling with matched-sets as the
sampling units can be used to obtain covariance
matrix estimates that can account for within-
family correlation.

DISCUSSION

We have proposed a new paradigm of condi-
tional likelihood for analysis of family-based case-
control studies. This approach, with a rare disease
approximation, leads to a variety of simple but
highly efficient methods of estimating statistical
interaction and other risk parameters of interest
involving genetic and environmental exposures.
These methods exploit within family G-E inde-
pendence assumptions that are much less strin-
gent than the G-E independence assumption that
has been previously utilized for case-only and
population-based case-control studies. To the best
of our knowledge, the proposed method involving
the likelihood Li;CC represents the first successful
effort for exploiting the within-family ‘‘Type-I
independence’’ assumption in the context of
family-based case-control studies. Moreover, the
likelihood Li;CC can be used for efficient analysis
of any other type of matched case-control study,

the required assumption being that G and E are
independent within ‘‘matched subjects’’ in the
population. The proposed method involving the
likelihood Li;CCGP, exploiting the ‘‘Type-II inde-
pendence’’ assumption, represents the first ap-
proach to a unified analysis of data from family-
based case-control studies that include parental
genotype information.
An important aspect of the proposed general

conditional likelihood (Li;general) is that it simulta-
neously conditions on a set phenotype event
(D1 þD0) and a set genotype event (G). Histori-
cally, the idea of conditioning on a set phenotype
event has been used in the setting of traditional
conditional logistic regression (Li;CLR) analysis of
matched case-control studies. In this approach,
however, one conditions on individual covariate
information of the case-control subjects. The idea
of conditioning on a set genotype event has also
existed for a while in the literature of family
studies. The well known likelihood (Li;CPT) of case-
parent-trio design is formed by conditioning on
the parental genotypes (GP) of the cases, which
yield the set of all possible genotypes for the
offspring. Recent extensions of Li;CPT for dealing
with missing parental genotype information has
also been based on conditioning on various types
of set genotype events [Clayton, 1999; Cordell and
Clayton 2002; Rabinowitz and Laird, 2000]. All of
these methods, however, condition on individual
phenotype information of the family members. In
this article, we show how the two approaches of
conditioning on a set genotype event and con-
ditioning on a set phenotype event can be unified
through the general conditional likelihood
(Li;general), resulting in novel and efficient methods
for analysis of matched case-control studies with
or without parental genotype information.
Our simulation studies clearly demonstrate the

efficiency advantage of our methods (Li;CC and
Li;CCGP) over the traditional conditional logistic
regression method for analysis of family-based
case-control and case-parents studies. These re-
sults also reveal some intriguing design implica-
tions. Several previous studies have compared the
relative efficiencies of sibling-case-control (SCC)
and case-parent trio (CPT) designs for estimation
of the multiplicative interaction parameter: they
generally concluded that while the former design
tends to be superior for dominant genes, the latter
design is more efficient for recessive genes [Witte
et al., 1999; Gauderman, 2002]. However, in these
studies the method employed for analysis of the
CPT design implicitly assumes G-E independence,

Gene-Environment Independence 151



but that for the SCC design does not exploit any
such assumption. In our study, when we analyzed
both designs using similar independence assump-
tions, we found not only that the efficiency
advantage of the SCC design over CPT design
for dominant genes is even greater than reported
before, but also that the SCC design can be more
efficient than the CPT design even for recessive
genes. In terms of other parameters of interest, a
weakness of the CPT design is that it cannot be
used to estimate either the additive interaction or
the association parameter for the environmental
exposures. This design, however, is quite efficient
for estimation of the genetic association para-
meter. The SCC design, on the other hand,
although it produces an estimate of all different
parameters of interest, was inefficient for estima-
tion of the genetic association parameter
ORðGjE ¼ 1Þ.
Our simulation studies also demonstrate the

optimality of the family-based case-control design
that includes parental genotype information.
Although the potential promise of such a hybrid
design has been discussed previously [Weinberg
and Umbach, 2000], the actual efficiency of such a
design has not been evaluated. It is worth noting
that we compare efficiencies of different family-
based designs with a fixed number of families,
but different designs require different amounts of
data collection within a family. The sibling-case-
control design with parental genotype informa-
tion, for example, requires one additional geno-
typing compared to an ordinary sibling-case-
control design: note that the sibling control need
not be genotyped if parental genotype data are
available. It also requires one additional exposure
assessment compared to an ordinary case-parents
design. Given that family members of cases are
usually well motivated, the effort required for
such additional data collection may be worth-
while, considering the potential for large effi-
ciency gain.
Comparison of the efficiency of the sibling-case-

control designs (SCC and SCCGP) with that of the
population-based case-control (PCC) design
shows that our methodology increases the utility
of the former design for a wider set of situations.
Previous studies, as well as our simulations,
demonstrate that the SCC design, when analyzed
with traditional methods, generally tends to be
less efficient than the PCC design, except when
the genetic variant under study is rare and/or
sibling correlation in the environment exposure is
modest. When analyzed with our methods, the

SCC design retains the efficiency advantage over
the PCC design for estimation of interaction and
some of the other parameters of interest in a wider
range of values for the gene-frequency and the
sibling-correlation parameters. The SCCGP design
retained the efficiency advantage for an even
wider range of parameter values. Of course, one
can also increase efficiency of the PCC design,
based on methods that can exploit G-E indepen-
dence. The required population level indepen-
dence assumption, however, is much stronger and
more likely to be violated due to spurious
association as described below.
Although exploiting G-E independence leads to

major efficiency gains, some caution is needed for
use of this assumption. The case-only estimate of
interaction, which relies on a population-based G-
E independence assumption, has been shown to
be severely biased when the assumption is
violated [Albert et al., 2001]. Even if no direct
association exists, association between G and E in
the population may arise, for example, due to
hidden population sub-structure across which
genotype and exposure frequency may vary or
by influence of family history on an individual’s
behavior regarding established risk factors such as
smoking.
Although the family-based independence as-

sumptions we exploit are much less stringent in
general, it is important to realize that the Type-I
independence assumption we exploit for case-
control studies is robust to spurious association
only for the sibling-case-control design. If cousins
are selected as controls, they may partially but not
completely share ethnic and family history back-
ground with the cases; thus, the possibility of
spurious association remains. One possible reme-
dy for minimizing such bias is to consider a
conditional G-E independence model that can
adjust for co-factors S, such as the ethnic origins of
the unrelated parents, by specifying the difference
in genotype-frequencies between a pair of rela-
tives as a parametric function of the differences in
S between the relatives. We have found that under
this relaxed independence assumption, the gen-
eral conditional likelihood in formula (3) can be
used with G ¼ GS, the unordered genotype in-
formation in a matched pair, to jointly estimate the
regression parameters of interest and the addi-
tional parameters of the conditional independence
model.
The G-E independence assumption can be

violated also due to direct association between G
and E. Genetic polymorphisms in the smoking
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metabolism pathway, for example, may not only
modify a subject’s risk from smoking, but also can
influence his/her level of addiction to smoking.
When the plausibility of such direct association
exists, the advantage of the case-control design is
that it has the option of being analyzed by the
standard conditional logistic regression method
that does not require the independence assump-
tion. The case-parents design, however, intrinsi-
cally relies on the independence assumption and
thus can lead to biased parameter estimates.
Our novel conditional likelihood framework

opens several areas of further research. We have
assumed rare disease for the simplification of
conditional likelihood calculations. From the
derivation shown in the Appendix it can be seen
that the precise assumption required here is that
the probability of at least one disease occurrence
in a pair of individuals is small for all combina-
tions of risk factors, a slightly stronger assumption
than that is typically made for an individual
subject in population-based case-control studies.
In our simulation study, where overall disease
prevalence was 1% in the population, we ob-
served no bias in testing and only modest bias in
parameter estimation even in situations where the
disease-risk was high for certain combinations of
G and E. Future work, however, is needed to
study the impact of the rare disease assumption
for more common diseases. The general condi-
tional likelihood of the form (3) is valid whether
the disease is rare or not: for common diseases,
however, these likelihoods would involve the
family-specific intercept parameters (aF). Thus,
one way of relaxing the rare disease assumption
would be to assume a parametric random effect
model for the distribution of aF across families
and estimate the corresponding parameters from
the conditional likelihoods themselves [Pfeiffer et
al., 2002].
Similar to the traditional conditional-logistic-

regression (CLR) analysis, the proposed condi-
tional likelihood procedures assume disease status
is conditionally independent within families.
However, if the locus under study is in linkage
disequilibrium with another disease susceptibility
locus, such a conditional independence model
may not capture the correlation within a family
that contributes more than two members in the
study [Weinberg and Umbach, 2000]. In such a
situation, the proposed pair-wise pseudo-like-
lihood (10) together with the robust variance
estimator (A.9) still remains a valid method for
analysis of the data. Alternative methods for

dealing with residual correlation that have been
previously developed in the context of traditional
CLR [Siegmund et al., 2000; Rieger et al., 2001],
also could be adopted in the setting of the novel
conditional likelihoods.
When studying the effect of a gene through

haplotypes is of interest, the proposed methodo-
logies can be applied for studying haplotype-
environment interaction, but some extensions
are required to deal with phase ambiguity. We
have demonstrated how to exploit parental
genotype information on case-control subjects
when both parents of a subject are available to
be recruited. In practice, however, genotype
information may be available only for one parent
for some case-control subjects. One way of
efficiently utilizing incomplete parental genotype
information would be to choose the conditioning
event G in Li;general (formula 3) to be the minimal
sufficient statistics for the gene-frequency para-
meters [Rabinowitz and Laird, 2000]. Various
alternative strategies, such as modelling mating-
type parameters [Kraft et al., 2004], that have been
proposed in the past for dealing with missing
parental genotypes in case-parents studies, could
be also useful for developing extensions of the
proposed methodologies. These and other exten-
sions of the methodologies will be studied in
future publications.
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APPENDIX

DERIVATION OF PROPOSED CONDITIONAL LIKELIHOOD IN THE GENERAL CASE

Recall that ðDi0;Gi0;Ei0Þ and ðDi1;Gi1;Ei1Þ are the data for the control and case, respectively. In addition,
Gi is the conditioning event, and HGi

is the set of ordered pairs ðGi1;Gi0Þ that are consistent with the
information in Gi. We also denote by Fi the ith family. Note that for the ith pair,

Li;general ¼prðDi1 ¼ 1;Di0 ¼ 0;Gi1;Gi0jDi1 þDi0 ¼ 1;Gi;Ei1;Ei0; FiÞ
¼prðDi1 ¼ 1;Di0 ¼ 0jDi1 þDi0 ¼ 1;Gi1;Gi0;Gi;Ei1;Ei0; FiÞ
�prðGi1;Gi0jDi1 þDi0 ¼ 1;Gi;Ei1;Ei0; FiÞ

¼prðDi1 ¼ 1;Di0 ¼ 0jDi1 þDi0 ¼ 1;Gi1;Gi0;Ei1;Ei0; FiÞ
�prðGi1;Gi0jDi1 þDi0 ¼ 1;Gi;Ei1;Ei0; FiÞ ¼ Li1�Li2:

The term Li1 is given in equation (2). It is easily seen that

Li2 ¼
pr Di1 þDi0 ¼ 1jGi1;Gi0;Ei1;Ei0; Fif gprðGi1;Gi0jGi;Ei1;Ei0;FiÞP

ðG0
i1
;G0

i0
Þ2HGi

pr Di1 þDi0 ¼ 1jG0
i1;G

0
i0;Ei1;Ei0; Fi

� �
prðG0

i1;G
0
i0jGi;Ei1;Ei0;FiÞ

:

By assumption, G and E are independent given Gi and Fi, and in addition the conditioning event removes
the family effect, so that prðGi1;Gi0jGi;Ei1;Ei0; FiÞ ¼ prðGi1;Gi0jGiÞ. We thus have that

Li2 ¼
pr Di1 þDi0 ¼ 1jGi1;Gi0;Ei1;Ei0;Fif gprðGi1;Gi0jGiÞP

ðG0
i1
;G0

i0
Þ2HGi

pr Di1 þDi0 ¼ 1jG0
i1;G

0
i0;Ei1;Ei0; Fi

� �
prðG0

i1;G
0
i0jGiÞ

: ðA:1Þ
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In addition, using (1), we have that

pr Di1 þDi0 ¼ 1jGi1;Gi0;Ei1;Ei0; Fið Þ
¼ pr Di1 ¼ 1;Di0 ¼ 0jGi1;Gi0;Ei1;Ei0; Fið Þ þ pr Di1 ¼ 0;Di0 ¼ 1jGi1;Gi0;Ei1;Ei0; Fið Þ

¼
expðaFiÞ� exp mðGi1;Ei1; bÞf g þ exp mðGi0;Ei0; bÞf g

� �
1þ exp aFi þmðGi1;Ei1; bÞf g
� �

� 1þ exp aFi þmðGi0;Ei0; bÞf g
� �

� expðaFiÞ� exp mðGi1;Ei1;bÞf g þ exp mðGi0;Ei0;bÞf g
� �

;

ðA:2Þ

where the approximation in the last step is based on the assumption of rare disease. Thus, combining (A.1)
and (A.2), we see that

Li2 ¼
P1

j¼0 exp mðGij;Eij; bÞ
� �h i

prðGi1;Gi0jGiÞP
ðG0

i1
;G0

i0
Þ2HGi

P1
j¼0 exp mðG0

ij;Eij; bÞ
n oh i

prðG0
i1;G

0
i0jGiÞ

: ðA:3Þ

Combining (2) and (A.3), we find that

Li;general ¼
exp mðGi1;Ei1;bÞf gprðGi1;Gi0jGiÞP

ðG0
i1
;G0

i0
Þ2HGi

P1
j¼0 exp mðG0

ij;Eij; bÞ
n oh i

prðG0
i1;G

0
i0jGiÞ

; ðA:4Þ

which is the natural generalization of (7).
For the standard matched family-based case-control design where we set Gi to be the set of genotypes for

the ith case-control pair, under the assumption that prðGi1 ¼ g1;Gi0 ¼ g0jGiÞ ¼ prðGi1¼ g0;Gi0 ¼ g1jGiÞ, we
have that prðGi1;Gi0jGiÞ ¼ 1=2, thus verifying (5). For the parental genotype case-control design, we have
already verified (7) simply by setting Gi ¼ GP

i , the full parental genotype information for the ith case-
control pair.

STANDARD ERROR ESTIMATION

In this section, we show that the asymptotic covariance matrix of the estimate, bbb, that maximizes (A.4)
can be estimated as follows:

covðbbbÞ ¼ XM
i¼1

RiðbbbÞ
AiðbbbÞ � CiðbbbÞCT

i ðbbbÞ
A2

i ðbbbÞ
( )" #�1

; ðA:5Þ

where if mbðG;E;bÞ and mbbðG;E; bÞ are the vector and matrix of first and second partial derivatives of
mðG;E;bÞ with respect to b, then

AiðbÞ ¼
X

ðg0
1
;g0

0
Þ2HGi

X1
j¼0

exp mðg0j;Eij; bÞ
n o24 35prðGi1 ¼ g01;Gi0 ¼ g00jGiÞ;

CiðbÞ¼
X

ðg0
1
;g0

0
Þ2HGi

X1
j¼0

mbðg0j;Eij;bÞ exp mðg0j;Eij; bÞ
n o24 35prðGi1 ¼ g01;Gi0 ¼ g00jGiÞ;

RiðbÞ ¼
X

ðg0
1
;g0

0
Þ2HGi

X1
j¼0

mbðg0j;Eij;bÞmT
bðg0j;Eij;bÞ

24 exp mðg0j;Eij; bÞ
n o35

�prðGi1 ¼ g01;Gi0 ¼ g00jGiÞ:

To show (A.5), an alternative formulation of (A.4) is useful. No longer insisting that Di1 is the case, so that
ðDi1;Di0Þ ¼ ð1; 0Þ or ð0; 1Þ, equation (A.4) actually shows that
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prðDi1 ¼ d1;Di0 ¼ d0;Gi1 ¼ g1;Gi0 ¼ g0jDi1 þDi0 ¼ d1 þ d0 ¼ 1;Gi;Ei1;Ei0; FiÞ

¼ exp d1mðg1;Ei1;bÞ þ d0mðg0;Ei0;b1Þf gprðGi1 ¼ g1;Gi0 ¼ g0jGiÞ
AiðbÞ

:
ðA:6Þ

This means that the derivative with respect to b of the loglikelihood for the ith observation is

‘iðbÞ ¼ �CiðbÞ=AiðbÞ þDi1mbðGi1;Ei1;bÞ þDi0mbðGi0;Ei0; bÞ: ðA:7Þ
It is easily seen that the Hessian is

‘i;bðbÞ ¼ � RiðbÞ
AiðbÞ

þ CiðbÞCT
i ðbÞ

A2
i ðbÞ

þDi1mbbðGi1;Ei1;bÞ þDi0mbbðGi0;Ei0;bÞ

�
P

ðg0
1
;g0

0
Þ2HGi

P1
j¼0 mbbðg0j;Eij; bÞ exp mðg0j;Eij; bÞ

n oh i
prðGi1 ¼ g01;Gi0 ¼ g00jGiÞ

AiðbÞ
:

Using (A.6), it is easy to see that the expectation of the sum of the last three terms conditional on
ðDi1 þDi0 ¼ 1;Gi;Ei1;Ei0; FiÞ equals zero, and hence that the expected Fisher information for the ith

observation is RiðbÞ=AiðbÞ � CiðbÞCT
i ðbÞ=A2

i ðbÞ, thus proving (A.5).

ASYMPTOTIC EFFICIENCY THEORY

Both Li1 and Li2 are conditional distributions depending on the parameter b. Hence the derivatives of
their logarithms Li1;bðbÞ and Li2;bðbÞ behave as if they are log-likelihood scores, and when summed over
the data each have information matrices I1ðbÞ and I2ðbÞ, respectively. The claim that our method is
asymptotically more efficient than conditional logistic regression then follows if we can show that
EfLi1;bðbÞLT

i2;bðbÞg ¼ 0. To see this, note that by their definitions as derivatives of logarithms of conditional
probabilities, and making the rare disease assumption, we have that

0 ¼E Li1;bðbÞjDi1 þDi0

�
¼ 1;Gi1;Gi0;Gi;Ei1;Ei0;Fig: ðA:8Þ

Of course,

E Li1;bðbÞLT
i2;bðbÞ

n o
¼ E E Li1;bðbÞLT

i2;bðbÞjDi1 þDi0

nh
¼ 1;Gi1;Gi0;Gi;Ei1;Ei0;Fig�;

where the interior expectation is with respect to the distribution of ðDi1;Di0Þ given Di1 þDi0 ¼ 1. However,
Li2;bðbÞ is a function only of ðDi1 þDi0 ¼ 1;Gi1;Gi0;Gi;Ei1;Ei0; FiÞ, and does not depend otherwise on
ðDi1;Di0Þ, so that by (A.8),

E Li1;bðbÞLT
i2;bðbÞ

n o
¼ E E Li1;bðbÞjDi1 þDi0

��
¼ 1;Gi1;Gi0;Gi;Ei1;Ei0; FigLT

i2;bðbÞ
i
¼ 0:

This verifies the claim.

SANDWICH VARIANCE ESTIMATOR FOR PAIRWISE PSEUDO-LIKELIHOOD

Let lðjkÞiðbÞ ¼ q logLðjkÞi;�=qb and VðjkÞiðbÞ ¼ q logLðjkÞi;�=qbqb
T denote the vector of first-derivatives and

matrix of second-derivatives, respectively, of the log-pseudo-likelihood for the ðjkÞth pair of the ith family.
The covariance matrix of bbb then can be estimated by the sandwich estimator defined as follows:

covjðbbbÞ ¼Q�1
3 ðbbbÞQ4ðbbbÞQ�1

3 ðbbbÞ;Q3ðbÞ ¼
XM
i¼1

X
j2Di0

;k2Di1

VðjkÞiðbÞ;

Q4ðbÞ ¼
XM
i¼1

X
j2Di0

;k2Di1

‘ðjkÞiðbÞ

8<:
9=; X

j2Di0
;k2Di1

‘ðjkÞiðbÞ

8<:
9=;

T

;
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